Solutions to JEE Advanced Booster Test – 1 | 2024 | Code A

[PHYSICS]

1.(AD) Impending state of motion is a critical border line between static and dynamic state of body. The block under the influence of $P\sin\theta$ (Component of P) may have a tendency to move upward or it may be assumed that $P\sin\theta$ just prevents downward fall of the block. Therefore there are two possibilities:

Case (I)

Impending motion upward: In this case force of friction is downward from conditions of equilibrium

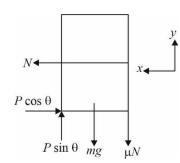
$$\sum F_x = N - P\cos\theta = 0$$

or
$$N = P \cos \theta$$

$$\sum F_{v} = P\sin\theta - \mu N - mg = 0$$

or
$$P\sin\theta - \mu P\cos\theta - mg = 0$$
 or

$$P_{\text{max}} = \frac{mg}{\sin \theta - \mu \cos \theta}$$



Case (II)

Impending motion downward: In this case friction force acts upward

$$\sum F_x = N - P\cos\theta = 0$$

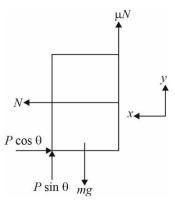
or
$$N = P \cos \theta$$

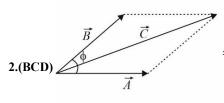
$$\sum F_y = P\sin\theta + \mu N - mg = 0$$

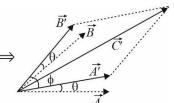
or
$$P\sin\theta + \mu P\cos\theta - mg = 0$$
 or $P_{\min} = \frac{mg}{\sin\theta + \mu\cos\theta}$

Therefore the block will be in state of equilibrium for

$$\frac{mg}{\sin\theta + \mu\cos\theta} \le P \le \frac{mg}{\sin\theta - \mu\cos\theta}$$







$$\vec{A} + \vec{B} = \vec{C} \& \vec{A}' + \vec{B}' = \vec{C}'$$

$$\vec{A} + \vec{B} \neq \vec{A}' + \vec{B}' \neq \vec{C}$$

$$\vec{A}' \cdot \vec{B}' = \vec{A} \cdot \vec{B}$$

$$|\vec{A}' + \vec{B}'| = |\vec{A} + \vec{B}| = |\vec{C}|$$

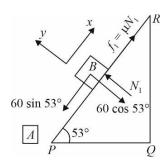
3.(AC) When wedge PQR rests on face PQ, block A will slide down and block B will be about to start sliding because for block B,

Angle of repose for block $B(\theta_R) = \tan^{-1}(\mu)$

$$\Rightarrow \qquad \theta_R = \tan^{-1}(4/3) = 53^\circ$$

$$\Rightarrow \qquad \theta_R = \angle RPQ$$

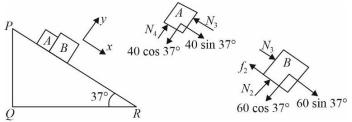
$$\Rightarrow$$
 $\theta_R = \angle RPQ$



$$\sum F_x = 0 \qquad \Rightarrow \qquad f_1 = 60 \sin 53^\circ$$

$$\Rightarrow \qquad f_1 = 48N$$

When wedge rests about face QR,



For equilibrium of A:

$$\sum F_x = 0 \implies 40\sin 37^\circ - N_3 = 0 \implies N_3 = 24N$$

For equilibrium of B:

ilibrium of B:
$$\sum F_y = 0 \implies N_2 - 60\cos 37^\circ = 0 \implies N_2 = 48N$$

So,
$$(f_2)_{\text{max}} = \mu N_2 = \left(\frac{4}{3}\right)(48) = 64N$$

And
$$\sum F_x = 0$$
 \Rightarrow $60 \sin 37^\circ + N_3 - f_2 = 0$
 \Rightarrow $60 \sin 37^\circ + 24 = f_2$
 \Rightarrow $f_2 = 60N$ $\{f_2 < (f_2)_{\text{max}}\}$

Hence
$$\frac{f_1}{f_2} = \frac{48}{60} = \frac{4}{5}$$

4.(AB) Component of \vec{A} along \vec{B} is $|\vec{A}|\cos\theta \hat{B}$ for θ being the angle between the vectors.

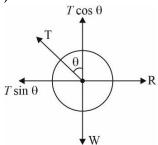
Also
$$\hat{B} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$$
. So, choice (a) is correct.

The vector $(\hat{i} - \hat{j})$ is perpendicular to the vector $(\hat{i} + \hat{j})$.

So, the other resolved component is $|\vec{A}| \sin \theta \left(\frac{\vec{i} - \vec{j}}{\sqrt{2}}\right)$.

5.(BC) The resultant of three vectors is zero only if they can form a triangle. But three vectors lying in different planes cannot form a triangle.

6.(ABD)



$$T^{2} = R^{2} + W^{2}$$

$$\sum \vec{F}_{net} = 0$$
So, $\vec{T} + \vec{W} + \vec{R} = 0$
7.(C) & 8.(C)
$$\vec{\tau}_{P} = \vec{r}_{OP} \times \vec{F}$$

$$= (xi + yj - \hat{k}) \times (2i - j + \hat{k})$$

$$\vec{\tau}_{P} = (y - 1)i - (x + 2)j - (x + 2y)\hat{k}$$
Given, $\vec{\tau}_{P} = -4\hat{j} - 4\hat{k}$

 \therefore x = 2 and y = 1

So, coordinates of P are (2, 1, -1).

Since x-component of torque at Q about 'O' is zero and y and z-components are equal in magnitude and directed along the negative directions of the respective axes, $\vec{\tau}_O \uparrow \uparrow \vec{\tau}_P$

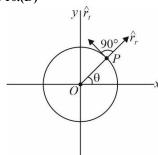
$$\Rightarrow \qquad \vec{\tau}_Q = \lambda \vec{\tau}_P = \lambda (-4\hat{j} - 4\hat{k}) \text{ where } \lambda \text{ is a constant}$$
 Also
$$|\vec{\tau}_Q| = 10\sqrt{2}$$

$$\Rightarrow \sqrt{(4\lambda)^2 + (4\lambda)^2} = 10\sqrt{2}$$

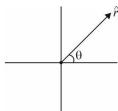
$$\Rightarrow 32\lambda^2 = 200 \Rightarrow \lambda = \frac{5}{2}$$

So,
$$\vec{\tau}_Q = \frac{5}{2}(-4\hat{j} - 4\hat{k})$$
 \Rightarrow $\vec{\tau}_Q = -10\hat{j} - 10\hat{k} \text{ N-m}$

9.(B) & 10.(D)



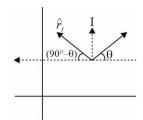
9.
$$\vec{r}_r = \hat{i}\cos\theta + \hat{j}\sin\theta$$



10.
$$\vec{r}_t = -\hat{i}\cos\theta' + \hat{j}\sin\theta'$$

$$= -\hat{i}\cos(90^\circ - \theta) + \hat{j}\sin(90^\circ - \theta)$$

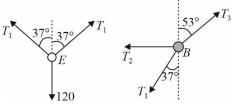
$$= -\hat{i}\sin\theta + \hat{j}\cos\theta$$



- **11.(D)** $|\vec{A}| = 4; |\vec{B}| = 5; |\vec{C}| = 3$
 - (A) $|\vec{A} \vec{B}| \le (4+5)$
 - **(B)** If \vec{A} , \vec{B} , $-\vec{C}$ form a right angle triangle then $\vec{A} + \vec{B} \vec{C} = 0$
 - (C) $\vec{A} \cdot (\vec{B} \vec{C}) = |\vec{A}| |\vec{B} \vec{C}| \cos \theta = 4.8 \cdot 1 = 32$
 - **(D)** $|\vec{A} + \vec{B} \vec{C}| \le (4+5+3)$
- 12.(A) From figure,

$$2T_1 \cos 37^\circ = 120$$

$$\Rightarrow 2T_1 \times \frac{4}{5} = 120 \Rightarrow T_1 = 75N$$



$$T_1\cos 37^\circ = T_3\cos 53^\circ$$

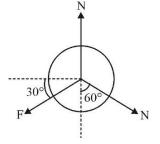
$$\Rightarrow$$
 $75 \times \frac{4}{5} = T_3 \times \frac{3}{5} \Rightarrow T_3 = 100N$

$$T_2 + T_1 \sin 37^\circ = T_3 \sin 53^\circ$$

$$\Rightarrow T_2 + 75 \times \frac{3}{5} = 100 \times \frac{4}{5} \Rightarrow T_2 = 35N$$

SECTION 2

1.(1)



$$N = F \sin 30^{\circ} + N \cos 60^{\circ}$$

$$F\cos 30^{\circ} = N\sin 60^{\circ}$$

Solve to get

$$F = N$$

2.(1.50) Using the parallelogram law of vector addition,

$$R_1 = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos 60^\circ} = \sqrt{F_1^2 + F_2^2 + F_1F_2}$$

$$R_2 = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos 120^\circ} = \sqrt{F_1^2 + F_2^2 - F_1F_2}$$

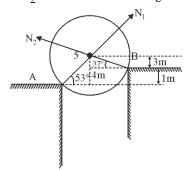
Therefore,
$$\frac{F_1^2 + F_2^2 + F_1 F_2}{F_1^2 + F_2^2 - F_1 F_2} = \left(\frac{R_1}{R_2}\right)^2 = \frac{19}{7} \qquad \Rightarrow \qquad \frac{\left(\frac{F_1}{F_2}\right)^2 + 1 + \frac{F_1}{F_2}}{\left(\frac{F_1}{F_2}\right)^2 + 1 - \frac{F_1}{F_2}} = \frac{19}{7}$$

Now, let
$$\frac{F_1}{F_2} = K$$

Therefore,
$$\frac{K^2 + K + 1}{K^2 - K + 1} = \frac{19}{7}$$
 \Rightarrow $12K^2 - 26K + 12 = 0$

Solving, we get
$$K = \frac{3}{2}$$
 or $\frac{2}{3}$ \therefore $F_1 > F_2 \implies K > 1$ $\therefore K = \frac{3}{2} = 1.5$

3.(32) Let N_1 and N_2 denote the forces acting on the sphere from the supports A and B respectively



Balancing forces,

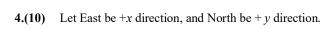
$$\frac{3N_1}{5} = \frac{4N_2}{5}$$
 ...(ii)

$$\frac{4N_1}{5} + \frac{3N_2}{5} = 40 \qquad ...(ii)$$

Solving, we get

$$N_1 = 32 \ N$$

$$N_2 = 24 \ N$$



Let initial position of *B* be the origin
Final position of *B*,
$$\overline{x}_B = 4\hat{i} + (-2\hat{i} - 2j) = 2\hat{i} - 2\hat{j}$$

Initial position of A is
$$10\hat{i} \implies$$
 Final position of A, $\bar{x}_A = 10\hat{i} + (6\hat{i} + 6\hat{j}) + (-8\hat{i}) = 8\hat{i} + 6\hat{j}$

Final distance between A and B is
$$\left| \overline{x}_A - \overline{x}_B \right| = \left| 6\hat{i} + 8\hat{j} \right| = \sqrt{36 + 64} = 10m$$

5.(3)
$$\vec{P} \times \vec{R} = 2\hat{i} - 2\hat{j} + \hat{k}$$

 $\left| \vec{P} \times \vec{R} \right| = 3$

$$\left| \vec{Q} - \vec{P} \right| = 2\sqrt{2}$$

$$(\vec{Q} - \vec{P})^2 = 8$$

$$Q^2 + P^2 - 2\vec{Q} \cdot \vec{P} = 8$$

$$Q^2 + P^2 - 2Q = 8$$

100

$$Q^{2} + 9 - 2Q = 8$$

$$|Q| = 1$$

$$|(\vec{P} \times \vec{R}) \times \vec{Q}| = |\vec{P} \times \vec{R}| |\vec{Q}| \sin 30^{\circ}$$

$$= 3 \times (1) \frac{1}{2} = \frac{3}{2}$$

$$n = 3$$

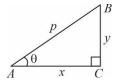
6.(1)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB} = mp^2$$

$$p \cos \theta x + p \sin \theta y + 0 = mp^2$$

$$p \cos \theta \cdot p \cos \theta + p \sin \theta \cdot p \sin \theta = mp^2$$

$$p^2 (\cos^2 \theta + \sin^2 \theta) = mp^2$$

$$m = 1$$



[CHEMISTRY]

1.(ABC)

$$2H_3AsO_4 + 5H_2S \longrightarrow As_2S_5 + 8H_2O$$

 $(n = 5)$ $(n = 2)$ $(n = 10)$ $(n = 10/8)$

Mole of
$$H_3 AsO_4$$
 taken = $\frac{35.5}{142} = 0.25$

Mole of
$$As_2S_5$$
 formed = $\frac{1}{2} \times \text{mole of } H_3AsO_4$ taken = $\frac{1}{2} \times 0.25$

Mole of
$$H_2O$$
 formed = $4 \times \text{mole}$ of H_3AsO_4 taken = $0.25 \times 4 = 1$

Equivalent mass of
$$H_3 AsO_4 = \frac{142}{5} = 28.4$$

Equivalent of H_3AsO_4 used = Equivalent of H_2S used = $0.25 \times 5 = 1.25$

Hence (A), (B) and (C) are correct.

2.(ABD)

2 mole equimolar mixture contain one mole each of Na₂CO₃ and NaHCO₃.

$$Na_2CO_3 \xrightarrow{\Delta} No \text{ effect}$$

$$2\text{NaHCO}_{3} \xrightarrow{\Delta} \text{Na}_{2}\text{CO}_{3} + \underbrace{\text{H}_{2}\text{O} + \text{CO}_{2}}_{\text{Loss in mass}}$$

Mole of H_2O formed = 0.5

Mass of H_2O formed = $0.5 \times 18 = 9 \text{ gm}$

Mole of CO_2 formed = 0.5

Mass of CO_2 formed = $0.5 \times 44 = 22 \text{ gm}$

Total loss in mass = 9 + 22 = 31 gm

$$\label{eq:Mass_of_residue} \text{Mass of residue} = \underbrace{w_{Na_2CO_3}}_{\text{takan initially}} + \underbrace{w_{Na_2CO_3}}_{\text{formed from NaHCO_3}} = (1 \times 106) + (0.5 \times 106) = 159 \, \text{gm}$$

Equivalent of Na_2CO_3 = Equivalent of HCl

(B is limiting reagent)

(Total moles = $\frac{10}{2}$)

$$\frac{159}{106} \times 2 = 1 \times V$$
 \Rightarrow $V = 3L$

Equivalent of HCl = $\frac{1}{2}$ Equivalent of Na₂CO₃

$$1 \times V = \frac{1}{2} \times 1 \times 2 \implies V = 1L$$

Hence (A), (B) and (D) are correct.

Hence (A), (B) and (D) are correct.

Hence (A), (C) and (D) are correct.

5.(ABC)

Strength of Na₂CO₃ solution =
$$\frac{0.1}{10} \times 1000 = 10 \text{ g/L}$$

Molarity of Na₂CO₃ solution =
$$\frac{10}{M_0} = \frac{10}{286}$$

Normality of Na₂CO₃ solution =
$$\frac{10}{286} \times 2$$

Equivalent of H^+ ions (in 30 mL) = Equivalent of Na_2CO_3 solution

$$N \times \frac{30}{1000} = \frac{10}{286} \times 2 \times \frac{42.9}{1000}$$

$$N_{H^{+}} = \frac{10 \times 2 \times 42.9}{286 \times 30} = 0.1$$

$$0.1 \times 2000 = (16 \times 5) + (10 \times 4.8) + (10 \times 3 \times x)$$

$$200 = 80 + 48 + 30x \implies x = 2.4 \text{ mL}$$

Mole of
$$PO_4^{3-}$$
 = Mole of $H_3PO_4 = 10 \times \frac{2.4}{1000} = 0.024$

Mass of $PO_4^{3-} = 0.024 \times 95 = 2.28 \text{ gm}$

6.(AC)

Chemical interaction between A and B2 results in formation of either AB2 or A2B2 in a reaction, not both in the same reaction. In this case there are two parallel reactions taking place for formation of both AB_2 and A_2B_2 .

Reaction-I:
$$A + B_2 \longrightarrow AB_2$$
Reaction-II: $2A + B_2 \longrightarrow A_2B_2$ 7Solution

Mole of A taken =
$$\frac{w}{200}$$

Mole of B taken =
$$\frac{W}{254}$$

Mole of A taken > Mole of B₂ taken

Let x mole of A are used in reaction-I while 2y mole are used for reaction-II.

Mole of
$$A = x + 2y$$

Mole of B₂ used in reaction-I are x and y mole are used in reaction-II.

Moles of B_2 used = x + y.

According to question A and B2 are used completely hence

$$x + 2y = \frac{w}{200}$$
 (1)

$$x + y = \frac{w}{254}$$
 (2)

On solving
$$y = \frac{w \times 54}{200 \times 254} = \text{mole of } A_2B_2 \text{ formed}$$

$$x = \frac{146w}{200 \times 254} = \text{mole of } AB_2 \text{ formed}$$

Mole of AB_2 formed > Mole of A_2B_2 formed

7.(A) Electrolysis of water, atom economy =
$$\frac{32}{36} \times 100 = 88.9\%$$

Catalytic decomposition of
$$H_2O_2$$
, atom economy = $\frac{32}{68} \times 100 = 47.1\%$

Producing oxygen by the electrolysis of water has the better atom economy and produce less waste.

8.(B) I
$$\Rightarrow$$
 Atom economy = 49.8%; Percentage yield = 75%

II
$$\Rightarrow$$
 Atom economy = 49%; Percentage yield = 64%

Volume of oil = 5 mL

Mass of oil = $5 \times 0.95 = 4.75 \,\text{gm}$

Mole of oil =
$$\frac{4.75}{240}$$
 = 1.98×10⁻²

Volume of one molecule $= a^3$

Number of molecules
$$=\frac{5}{a^3}$$
 \Rightarrow $a = \frac{5}{2 \times 10^7} = 2.5 \times 10^{-7}$

$$=\frac{5}{(2.5\times10^{-7})^3}=3.2\times10^{20}$$

11.(C) (A)
$$\frac{W_{H_3PO_3}}{82} \times 2 = 1.5 \times 0.4$$
 \Rightarrow $W_{H_3PO_3} = 24.6 \text{ gm}$

(B)
$$\frac{W_{MgCO_3}}{84} = 0.2$$
 \Rightarrow $W_{MgCO_3} = 16.8 \,\mathrm{gm}; \ 16.8 \,\% \ \mathrm{pure}$

(C) Mole of Ti taken = Mole of Ti in
$$Ti_{144}O_1$$

$$\frac{1.44}{48} = \left(\frac{x}{(1.44 \times 48) + 16}\right) \times 1.44 \quad \Rightarrow \quad x = 1.77 \,\text{gm}$$

(D)
$$\left(\frac{(1.84 - x)}{84}\right) + \left(\frac{x}{100}\right) = \frac{0.88}{44}$$
 \Rightarrow $x = 1 \text{gm}$ $\left[W_{\text{CO}_2} = 1.84 - 0.96 = 0.88 \text{g}\right]$

12.(C) (P) HCl reacts with NaOH

Mole of HCl =
$$\frac{5.5}{36.5}$$
 = Mole of Cl⁻

Mole of NaOH =
$$\frac{5.5}{40}$$
 = Mole of Na⁺

Solution is acidic,
$$[Cl^-] = \frac{5.5}{36.5} \times \frac{1000}{200} = 0.75 \text{ M}$$

$$[\text{Na}^+] = \frac{5.5}{40} \times \frac{1000}{200} = 0.69 \,\text{M}$$

(Q) No reaction between HCl and CH₃COOH but mixing results in dilution.

Solution is acidic $[HC1] = [C1^-] = 0.15 M$

(R) NaOH reacts with HCl

Mole of NaOH = Mole of Na⁺ =
$$\frac{6}{40}$$
 = 0.15

Mole of
$$HCl = Mole of Cl^- = 0.15$$

Solution is neutral,
$$[Na^+] = [Cl^-] = 0.15 M$$

(S) NaCl reacts with AgNO₃ and form insoluble AgCl.

Mole of NaCl = Mole of Na
$$^+$$
 = 0.15

Mole of AgCl precipitate
$$= 0.15$$

Solution is neutral,
$$[Na^+] = 0.15 M$$
, $[Cl^-] = 0 M$

SECTION 2

1.(2.50) Hard water contain $CaSO_4$ and $Ca(HCO_3)_2$.

Mole of
$$Ca^{2+}$$
 = Mole of $SO_4^{2-} = \frac{96}{96} = 1$ (in 10^6 mL solution)

Mole of Ca²⁺ =
$$\frac{1}{2}$$
 × Mole of HCO₃⁻ = $\frac{183}{61}$ × $\frac{1}{2}$ = 1.5 (in 10⁶ mL solution)

Total moles of
$$Ca^{2+} = 1 + 1.5 = 2.5$$

Molarity =
$$\frac{2.5}{10^6} \times 10^3 = 2.5 \times 10^{-3} = x \times 10^{-3}$$
 \Rightarrow $x = 2.5$

2.(696)

Mass of Pd taken = w gm

Volume of Pd =
$$\frac{w}{12}$$
cc (at STP)

Volume of
$$H_2 = \frac{W}{12} \times 936 cc$$

Mole of H =
$$2 \times \frac{w}{12} \times \frac{936}{22400}$$

Molarity of H =
$$\frac{2 \times w \times 936 \times 1000}{12 \times 22400 \times w}$$
 = 6.96 = 696×10⁻² \Rightarrow x = 696 (round off value)

3.(3.60)

Molar mass of CaHAsO₄ \cdot 2H₂O = 216g / mole

Mole of O atoms = $6 \times \text{Mole}$ of CaHAsO₄ · 2H₂O

Number of O atoms = Mole of $O \times 6 \times 10^{23}$

$$P \times 10^{22} = 6 \times 10^{23} \times 6 \times \frac{2.16}{216} \implies P = 3.6$$

4.(10)
$$M = \frac{10xd}{M_0} = \frac{10 \times 30.7 \times 1.11}{34} = x M \implies x = 10.02 \approx 10$$

5.(37) Potassium sulphide is K₂S and potassium chloride is KCl.

Let mass of K₂S be w gm.

$$\left(\frac{2 \times w}{112}\right) + \left(\frac{5 - x}{75}\right) = \frac{3}{40} \qquad \Rightarrow \qquad x = \frac{w}{5} \times 100 = 36.84 \approx 37$$

6.(0.20)

$$NaOH + Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O \longrightarrow 4Na^+ + 2CO_3^{2-} + 3H_2O$$

$$[HCO_3^-] = (y - x) = 0.10$$

$$[Na^+] = 4x + 3(y - x) = 0.50$$

$$4x + 0.30 = 0.50$$

$$x = \frac{0.50 - 0.30}{4} = \frac{0.20}{4} = 0.05$$

$$y = 0.10 + 0.05 = 0.15$$

$$x = 0.05$$
; $y = 0.15$

[MATHEMATICS]

1.(ABCD)

$$(\log_2 x)^2 - 4\log_2 x - 12 = (m+1)^2$$

$$t^2 - 4t - \left\{12 + \left(m + 1\right)^2\right\} = 0$$

$$t = \frac{4 \pm \sqrt{16 + 4(12 + (m+1)^2)}}{2}$$

$$D > 0 \implies (A)$$
 is correct

Now
$$D_{\min}$$
 when $m = -1$

$$\log_2 x = \frac{4 \pm 8}{2} = 6 \text{ or } -2$$

$$x = 2^6 \text{ or } 2^{-2}$$

$$\Rightarrow$$
 (C) and (D) are correct

Also
$$\log_2 x_1 + \log_2 x_2 = 4$$

$$\log_2 x_1 x_2 = 4$$

$$\Rightarrow$$
 $x_1x_2 = 2^4$

$$\Rightarrow$$
 (B) is correct

2.(ABC)

$$f(x) = Ax^2 + Bx + C$$

$$A = a+b-2c = (a-c)+(b-c)>0$$

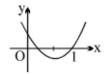
$$\Rightarrow A > 0$$

Now x = 1 is obvious solution therefore both roots are rational.

$$\underbrace{\left(b-a\right)}_{-ve} + \underbrace{\left(c-a\right)}_{-ve} < 0$$

$$\Rightarrow B < 0;$$

$$Vertex = -\frac{B}{2A} > 0$$



hence abscissa 'a' of the vertex > 0

(D) need not be correct as with

$$a = 5, b = 4, c = 2, P < 0$$

And
$$a = 6, b = 3, c = 2, P > 0$$

$$\Rightarrow$$
 (A), (B) and (C) are correct.

3.(ABC)

$$f(x) = (p+q-2r)x^2 + (q+r-2p)x + (r+p-2q)$$

Given p > 0; q > 0; r > 0 and

$$f(x)$$
 has a root in $(-1,0)$

Also
$$f(1) = 0$$

$$\therefore$$
 one root of $f(x)$ is 1

$$\Rightarrow f(0) < 0$$

$$\therefore r+p-2q<0$$

$$\frac{r+p}{q} < 2$$

Also product of roots =
$$\frac{r + p - 2q}{p + q - 2r}$$

$$\alpha \cdot 1 = \frac{r + p - 2q}{p + q - 2r}$$
 (since p, q, r are rational)

 \Rightarrow α is rational have both roots are rational

Also
$$r + p < 2q$$

$$(r+p)^2 < 4q^2$$

$$4q^2 > (p+r)^2$$

$$\underbrace{4q^2 - 4pr}_{discriminant \ of} > \underbrace{(p-r)^2}_{a + ve \ quantity}$$

$$px^2 + 2qx + r$$

 \Rightarrow roots of $px^2 + 2qx + r = 0$ are real and distinct

4.(CD)
$$(a-1)(x^2 + \sqrt{3}x + 1)^2 - (a+1)[(x^2 + 1)^2 - (x\sqrt{3})^2] \le 0$$

or $(a-1)(x^2 + \sqrt{3}x + 1)^2 - (a+1)[x^2 + x\sqrt{3} + 1)(x^2 - x\sqrt{3} - 1) \le 0$
 $(x^2 + \sqrt{3}x + 1)[(a-1)(x^2 + \sqrt{3}x + 1) - (a+1)(x^2 - \sqrt{3}x + 1)] \le 0 \ \forall x \in \mathbb{R}$
 $\Rightarrow -2(x^2 + 1) + 2a\sqrt{3}x \le 0$
 $\Rightarrow x^2 - a\sqrt{3}x + 1 \ge 0 \ \forall x \in \mathbb{R}$
 $\Rightarrow 3a^2 - 4 \le 0 \quad (D \le 0)$
 $\Rightarrow a \in \left[-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right]$

 \Rightarrow number of possible integral value of 'a' is $\{-1,0,1\}$

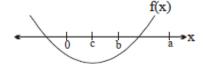
$$\Rightarrow$$
 3

and sum of all integral values of 'a' is -1+0+1=0

5.(ABC)

Let
$$f(x) = a(x-b)(x+c) + b(x-a)(x+c) - c(x-a)(x-b)$$

Given a,b,c are sides of triangle, hence they are all positive.



Now,
$$f(a) = a(a-b)(a+c) > 0$$

 $f(b) = b(b-a)(b+c) < 0$
 $f(c) = a(c-b)(c+c) + b(c-a)(c+c) - c(c-a)(c-b) < 0$
 $f(0) = -abc - abc - abc = -3abc < 0$.

As f(0) < 0, hence one root is positive and one root is negative \Rightarrow roots are of opposite signs.

Hence f(x) = 0 has real and distinct roots and positive roots lies in (b, a).

6.(BC)

If for some value of x say $x = x_1$, the equation E = 0 has one root infinite and other root a **(A)** non zero finite,

so u = 0 and $v \neq 0$

u = 0 and v = 0 do not have a common root.

(A) is False

(B) If for some value of x say $x = x_2$, the equation E = 0 has both root infinite roots,

so u = 0 and v = 0

u = 0 and v = 0 will have a common root.

 \Rightarrow **(B)** is True

If for some value of x say $x = x_3$, the equation E = 0 becomes an identity in y, **(C)**

so u = 0, v = 0 and w = 0

u = 0, v = 0 and w = 0 must have a root, common to all of them.

 \Rightarrow (C) is True

If for some value of x say $x = x_4$, the equation E = 0 has both roots real and distinct then **(D)** v = 0 and w = 0 must have a common root is not necessary.

 \Rightarrow (D) is False

Paragraph for Q.7(A)-8(D)

We have $g(x) = x^2 - (m+1)x + m - 1$ **(i)**

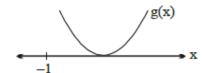
Now,

 $=(m+1)^2-4(m-1)$ discriminant

 $= m^2 - 2m + 5$, which is always positive.

g(x) always positive is not possible for any integral value of m. \Rightarrow

Different possibilities are as follows: -(ii)



If both roots of g(x) = 0 are greater than -1 then 3 conditions should be satisfied simultaneously.

(1) $D \ge 0$

(2) $\frac{-B}{2A} > -1$ (3) g(-1) > 0

Now, (1)

 \Rightarrow $(m+1)^2-4(m-1)\geq 0$

 \Rightarrow $m^2 - 2m + 5 \ge 0$, $\forall m \in R$.

(2)

 $\Rightarrow \frac{m+1}{2} > -1$

$$\Rightarrow m > -3$$

and (3)
$$\Rightarrow$$
 $1+(m+1)+m-1>0$

$$\Rightarrow m > -\frac{1}{2}$$

Hence from (1), (2) & (3) we get $m \in \left(-\frac{1}{2}, \infty\right)$

Paragraph for Q.9(D) - 10(B)

(i) For roots of f(x) = 0 to be equal in magnitude and opposite in sign

Sum of the roots = 0 and product of the roots < 0

Sum of the roots = 0

$$\Rightarrow a = 0$$

...(1)

Product of the roots < 0

$$\Rightarrow 5a^2 - 6a < 0, a \in \left(0, \frac{6}{5}\right) \qquad \dots (2)$$

$$(1) \cap (2) \Rightarrow a \in \phi$$

(ii) Range of f(x) is $[-5,\infty)$ for every real x

or range f(x)+5 is $[0,\infty)$ for every real x

Now
$$f(x) + 5 = x^2 - 4ax + 5a^2 - 6a + 5$$

for range to be $[0,\infty)$, D=0

$$\Rightarrow$$
 $16a^2 - 4(5a^2 - 6a + 5) = 0$

$$\Rightarrow$$
 $a^2 - 6a + 5 = 0$ \Rightarrow $a = 5 \text{ or } 1$

11.(A) A-Q; B-Q, R, S; C-R,S

(A) Let α be a common root.

then
$$\alpha^3 + K\alpha^2 + 3 = 0$$
 ...(1)

and
$$\alpha^2 + K\alpha + 3 = 0$$
 ...(2)

Now.

$$(1) - \alpha \times (2) \Rightarrow 3 - 3\alpha = 0$$

$$\therefore \alpha = 1$$

So, from (1), wet 1+k+3=0

$$\therefore k = -4$$

(B) Let $f(x) = 5x^2 + (k+1)x + k$

Now,
$$f(1)f(3) < 0$$

$$\Rightarrow$$
 $(2k+6)(4k+48)<0$

$$\Rightarrow$$
 $-12 < k < -3$

Also, checked at end points.

For
$$k = -3$$
,

We get
$$5x^2 - 2x - 3 = 0 \left\langle \frac{1}{-3} \right\rangle$$

And for k = -12,

We get
$$5x^2 - 11x - 12 = 0 \left\langle \frac{3}{-4} \right\rangle$$

(C) Let
$$x^2 + 13x + 44 = K^2$$

 $x^2 + 13x + (44 - K^2) = 0$

$$\therefore \qquad x = \frac{-13 \pm \sqrt{169 - 4(44 - K^2)}}{2} = \frac{13}{2} \pm \frac{\sqrt{4K^2 - 7}}{2}$$

For x to be an integer $4K^2 - 7$ must be square of an odd integer.

$$\therefore 4K^2 - 7 = (2n+1)^2$$

$$(2K+2n+1)(2K-2n-1)=7=7\times 1$$

$$\Rightarrow$$
 $2K+2n+1=7$ and $2K-2n-1=1$

$$\Rightarrow K=2$$

Hence
$$x^2 + 13x + 44 = 4$$

$$x^2 + 13x + 40 = 0$$

$$(x+8)(x+5)=0$$

$$\Rightarrow$$
 $x = -8 \text{ or } -5$

$$(A) \qquad \text{Let} \qquad y = |x|$$

$$x^2 - |x| + a = 0$$

$$y^2 - y + a = 0$$
 ...(2)

If both roots of (2) are positive then (1) have four solutions. If one root of (2) is positive then (1) have two solutions

...(1)

and if a = 0.

$$|x^2 - |x| = 0$$
 has $x = -1, 0, 1$ as solutions.

(B)
$$y = \frac{(x-4)(x-2)}{(x-2)(x-1)} = \frac{x^2 - 6x + 8}{x^2 - 3x + 2}$$

 $y \neq 1$ as when $y = 1, x \rightarrow \infty$

 $y \neq 2$ as this is the value when $x \rightarrow 2$

(C)
$$x > 0$$
, $\frac{1}{2} \log_2 x - 2 \left(\frac{\log_2 x}{2} \right)^2 + 1 > 0$

$$\Rightarrow \log_2 x - (\log_2 x)^2 + 2 > 0$$

$$\Rightarrow (\log_2 x)^2 - \log_2 x - 2 < 0$$
Let
$$\log_2 x = t$$

$$t^2 - t - 2 < 0$$

$$\Rightarrow (t - 2)(t + 1) < 0$$

$$\Rightarrow -1 < t < 2$$

$$\Rightarrow -1 < \log_2 x < 2$$

$$\Rightarrow \frac{1}{2} < x < 4$$

Hence number of integers $\{1,2,3\}$

(**D**) Domain, x > 1

$$\log_2 \frac{(x-1)(x+2)}{(3x-1)} < 1$$

$$\frac{\left(x-1\right)\left(x+2\right)}{\left(3x-1\right)} < 2$$

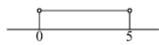
Since x > 1; \therefore D^r is +ve

$$\Rightarrow (x-1)(x+2) < 6x-2$$

$$x^2 + x - 2 < 6x - 2$$

$$x^2 - 5x < 0$$

$$x(x-5)<0$$



Since x > 1

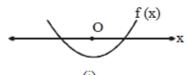
$$\therefore \qquad (1,5) \quad \Rightarrow \qquad a_1 = 1 \text{ and } a_2 = 5$$

$$\Rightarrow$$
 $a_2 - a_1 = 4$ which is divisible by 1, 2, 4

SECTION 2

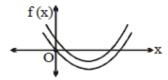
1.(5) Let
$$f(x) = x^2 - 2(a+1)x + 3(a-3)(a+1)$$

Case – I:



$$f(0) < 0 \qquad \Rightarrow (a-3)(a+1) < 0$$
$$\Rightarrow -1 < a < 3$$

Case - II:



(i)
$$f(0) \ge 0$$
 $\Rightarrow (a-3)(a+1) \ge 0$
 $\Rightarrow a \in (-\infty, -1] \cup [3, \infty)$

(ii)
$$D > 0$$

$$4 \left[(a+1)^2 - 3(a-3)(a+1) \right] > 0$$

$$a^2 + 2a + 1 - 3(a^2 - 2a - 3) > 0$$

$$-2a^2 + 8a + 10 > 0$$

$$a^2 - 4a - 5 < 0$$

$$(a-5)(a+1) < 0$$

$$a \in (-1,5)$$

(iii)
$$\frac{-B}{2A} > 0$$

$$(a+1) > 0$$

$$\therefore \quad a > -1$$

$$\therefore \quad \text{from (i) } \bigcirc \text{ (iii) } \bigcirc \text{ we get } a \in [3, 5]$$

$$\therefore \quad \text{from (i)} \cap \text{(ii)} \cap \text{(iii)} \cap \text{we get } a \in [3,5]$$

Case-I ∪ Case-II

$$\Rightarrow a \in (-1,3) \cup [3,5)$$

So, there are 5 possible integral values of a i.e., a = 0,1,2,3,4. **Ans.**

2.(7)
$$f(x) = (a+2)(a-1)x^2 - (a+5)x - 2 \le 0$$

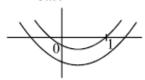
For a = -2;

$$f(x) = -3x - 2$$
 which is negative in $[0,1]$

For a = 1;

$$f(x) = -6x - 2$$
 which is negative in $[0,1]$

Now Case – I:



For
$$a^2 + a - 2 > 0$$

i.e.
$$a > 1$$
 or $a < -2$

(i)
$$f(0) \le 0$$
 always true

(ii)
$$f(1) \le 0$$

 $\Rightarrow a \in [-3,3]$...(2)

From (1) and (2)
$$a \in [-3, -2) \cup (1,3]$$

Case - II:



$$a^2 + a - 2 < 0$$

i.e.
$$-2 < a < 1$$

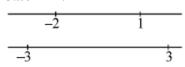
In this case:

(i)
$$D \ge 0 \implies (a+2)^2 \ge 0 \implies a \in R$$

(ii)
$$f(1) < 0 \& f(0) \le 0$$
 (always true)
 $\Rightarrow a \in (-3,3)$

Common solution (-2,1)

Case - III:



$$a < 0 \& D < 0$$

Since $D \ge 0$ \implies no soution in this case combining all $a \in [-3,3]$

3.(8) We have $x^2 - 4x - c \ge 0$

$$\Rightarrow D \le 0$$

$$\therefore$$
 16+4 $c \le 0$

$$\Rightarrow$$
 $4c \le -16$

$$\Rightarrow$$
 $c \le -4$

Let
$$f(x) = x^2 - 4x - c$$

$$\therefore x^2 - 4x - c - \sqrt{8x^2 - 32x - 8c} = 0$$

$$\Rightarrow f(x) - \sqrt{8f(x)} = 0$$

$$\therefore \qquad \sqrt{f(x)} \left(\sqrt{f(x)} - \sqrt{8} \right) = 0$$

$$\therefore f(x) = 0 \text{ or } f(x) = 8$$

Case - I:

f(x) = 0 has two distinct real solutions and f(x) = 8 has no real solution.

$$\therefore$$
 For $f(x) = 0, D > 0$ and for $f(x) = 8, D < 0$

$$\Rightarrow$$
 16+4c>0 and 16+4(c+8)<0

$$\Rightarrow$$
 $c > -4$ and $c < -12$

 \therefore No common solution for 'c' exist.

$$\therefore$$
 $c \in \phi$

Case - II:

f(x) = 0 has no real roots but f(x) = 8 has two distinct real roots

$$\therefore \quad \text{For } f(x) = 0, D < 0 \text{ and for } f(x) = 8, D > 0$$

$$\Rightarrow$$
 16+4c<0 and 16+4(c+8)>0

$$\Rightarrow$$
 $c < -4$ and $c > -12$

$$c \in (-12, -4)$$

Hence
$$b-a=-4-(-12)=-4+12=8$$

4.(3) Given
$$4x^2 - (5p+1)x + 5p = 0$$

Clearly, sum of roots = $\alpha + (1 + \alpha) = \frac{5p+1}{4}$

$$\Rightarrow \qquad \alpha = \frac{\left(\frac{5p+1}{4}-1\right)}{2} = \frac{5p-3}{8} \qquad \dots (1)$$

Also, product of roots =
$$\alpha(1+\alpha) = \frac{5p}{4}$$
 ...(2)

$$\therefore$$
 From (1) and (2), we get

$$\alpha^2 + \alpha = \frac{5p}{4} \Rightarrow \left(\frac{5p-3}{8}\right)^2 + \left(\frac{5p-3}{8}\right) = \frac{5p}{4}$$

$$\Rightarrow$$
 $(5p-3)^2 + 8(5p-3) = 80p$

$$\Rightarrow 25p^2 - 70p - 15 = 0$$

$$\Rightarrow 5p^2 - 14p - 3 = 0$$

$$\Rightarrow$$
 $(5p+1)(p-3)=0$

$$\therefore p = \frac{-1}{5}, 3$$

Hence, integral value of p = 3.

5.(7) The equation of the parabola can be taken as

$$y = m\left(x - \frac{1}{4}\right)^2 - \frac{9}{8}$$
 (given that minimum value is $\frac{-9}{8}$ when $x = \frac{1}{4}$)

or
$$y = m\left(x^2 + \frac{1}{16} - \frac{x}{2}\right) - \frac{9}{8}$$

or
$$y = mx^2 - \frac{m}{2}x + \frac{m}{16} - \frac{9}{8}$$
 ...(1)

Comparing equation (1) with $y = ax^2 + bx + c$,

Hence
$$a = m, b = \frac{-m}{2}$$
 and $c = \frac{m}{16} - \frac{9}{8}$

But
$$a+b+c$$
 is an integer

$$\frac{m}{2} + \frac{m}{16} - \frac{9}{8} = \frac{9m - 18}{16}$$
 is an integer.

If
$$a+b+c=0 \Rightarrow m=2$$

If
$$a+b+c=-1 \Rightarrow m=\frac{2}{9}$$

If
$$a+b+c=-2 \Rightarrow m=\frac{-14}{9}$$
 which is negative

Hence minimum positive value of coefficient of x^2 which is $m = \frac{2}{9}$

$$\Rightarrow$$
 $p=2$ and $q=9$

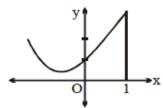
Hence
$$(q-p)=7$$
.

Vertex is at x = b. Also f(x) is decreasing in $(-\infty, b)$ and increasing in (b, ∞) . 6.(1)

$$x = b$$
 is the point of minima.

We have,
$$f(x) = x^2 - 2bx + 1$$

Case I:



Case-I:
$$y = f(x)$$

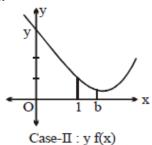
Let
$$b \le 0$$

So,
$$f(1)-f(0)=4$$

$$\Rightarrow$$
 $(2-2b)-1=4$

$$\Rightarrow$$
 $1-2b=4 \Rightarrow b=\frac{-3}{2}$ (which is < 0)

Case II:

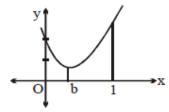


Let $b \ge 1$

So,
$$f(0)-f(1)=4 \implies 1-(2-2b)=4$$

$$\Rightarrow 2b = 5 \Rightarrow b = \frac{5}{2} \text{ (which is > 1)}$$

Case III:



Case-III: f(x)

If
$$0 < b < 1$$

Clearly, max.
$$\lceil f(0), f(1) \rceil - f(b) = 4$$

Here,
$$f(1) > f(0)$$

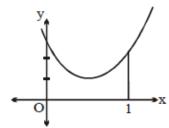
Hence,
$$f(1)-f(b)=4$$

$$\Rightarrow 2-2b-\left(1-b^2\right)=4$$

$$\Rightarrow b^2 - 2b + 1 = 4 \Rightarrow b - 1 = 2 \text{ or } -2$$

\Rightarrow b = 3 \text{ or } b = -1 \text{ (Rejected)}

$$\Rightarrow$$
 $b=3 \text{ or } b=-1$ (Rejected)



Case-III: y = f(x)

Here
$$f(0) > f(1)$$

So,
$$f(0)-f(b)=4 \Rightarrow 1-(1-b^2)=4$$

$$\Rightarrow b = 2 \text{ or } -2$$
Hence $b \in \left\{ \frac{-3}{2}, \frac{5}{2} \right\}$ (Rejected)

Hence, sum
$$=\frac{-3}{2} + \frac{5}{2} = 1$$
.